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We use the Toda soliton formalism to propose a possible complex movement of � helices with a very
important role in energy transduction during the power stroke of motor proteins. We find that this approach has
advantages in comparison with the Davydov soliton model and its variants. We estimated the model’s param-
eters and calculated corresponding properties of the predicted solitary waves including propagation velocities
and energies. The energies are found to be within the expected range.
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I. INTRODUCTION

When three-dimensional structures of protein molecules
are compared, although overall protein conformations differ,
two internal patterns are particularly common because they
result from regular hydrogen bond interactions between the
amide links joining the amino acids. These regular patterns
are known as � helices and � sheets. In an � helix, a com-
mon structural element in protein structures, the backbone of
the amino-acid chain winds about a central axis in a roughly
helical shape as shown in Fig. 1, while the various side
chains project outward.

In contrast, � sheets consist of several relatively straight
sections of backbone parallel or antiparallel to each other in
a common plane. The side chains project outward from this
plane in both directions.

An example protein might be a compact structure with a
core of � sheets and/or � helices. These features are con-
nected by loops, sequences with more varied backbone con-
formations. These loops typically comprise a large fraction
of the surface, and so binding sites for other molecules are
often formed in part of these loops; examples are the binding
sites for ATP in the kinesin and myosin families �1,2�, and
for GTP in tubulin, the constitutive protein of microtubule
polymers �3�.

Two loops, known as switch I and switch II, are almost
identical in both kinesin and myosin, and homologous to
structures throughout the G protein superfamily �2�. These
“sensor” loops detect the presence or absence of the � phos-
phate in ATP and ADP and switch between conformational
states depending on whether ATP or ADP is bound.

Analysis of the myosin and kinesin structures reveals that
movements of this �-phosphate sensor are transmitted to dis-
tant regions of the protein using an � helix that is connected

to the switch-II loop at its NH2 terminus �see Fig. 2�. This
highly conserved helix is called the relay helix �RH� �1� or
switch II helix. For simplicity, this paper uses only the
former terminology.

In both kinesin and myosin, the RH is a key structural and
functional element in the communication pathway linking
the catalytic �ATP hydrolysis� site, the polymer binding site,
and the mechanical element. A RH undergoes a nucleotide-
dependent conformational change that approximates the mo-
tion of a nanopiston �2�. We recently predicted a similar me-
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FIG. 1. �-helix backbone geometry. �a� Hydrogen bond network
shown as thin cylinders. �b� A close-up of three amino acids; in one
an amide linkage has been marked, as has the carbonyl bond of
another. Also marked are the bonds about which the � and � tor-
sions occur. The atoms of the side chain have been trucated to a
single R atom for clarity.
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chanical movement within �-tubulin monomers in a
microtubule during the GTP catalytic cycle �6�.

Over 30 years ago, being aware of the importance of �
helices in actin-myosin complexes, Davydov introduced a
solitonic model to explain muscle contraction �7–10�, at-
tempting to understand how the chemical energy of ATP hy-
drolysis, released in discrete units of about 0.5 eV, is utilized
by molecules in a cell. His idea was that this energy should
be converted into a resonant vibronic excitation about the
carbonyl �double carbon-oxygen� bond on the amino-acid
backbone �see Fig. 1�b��. He introduced nonlinear vibron-
phonon coupling, leading to a nonlinear Schrödinger equa-
tion with localized bell-shaped solitons, Davydov solitons
�DSs�.

II. WEAKNESS OF THE DS MODEL AND
ALTERNATIVE MODELS

The main problem with Davydov’s concept is that the
linewidth of the absorption peak due to the dipole-dipole
interactions between carbonyl vibrations imposes a lifetime
on the order of 10−12 s. This is too short to excite an accom-
panying deformation of the lattice and the subsequent gen-
eration of the predicted DS. Another weakness arises from
the value of the coupling strength parameter between vibra-
tional excitations and lattice deformations. An estimate was
made for a very narrow “window” of parameter values, im-
posing highly restrictive conditions for DS formation. A final
inconsistency is that, for the most part, the energy released in
ATP hydrolysis is utilized in the pistonlike motion of the �
helix, so there is not enough energy left to excite the bonds.

On the basis of the above arguments, it is very likely that
the DS model is not an appropriate mechanism to describe
the energy transfer from ATP �GTP� hydrolysis to distant
regions of proteins. In this paper we propose a nonlinear
mechanism based on an exponential �Toda� interatomic po-
tential as a basis for a mechanism of energy transfer via relay
helices.

It is widely accepted that exponential potentials ad-
equately describe hydrogen-bond interactions in biological
structures. For example, the Morse potential was adopted for
DNA base-pair interactions in several relevant papers
�11–13�. Further, Yomosa adopted the Toda potential �14�
more than 20 years ago, as an alternative to the DS model, to

try to model the process of muscle contraction.
Two of the present authors have previously examined pos-

sible roles of Toda solitons �TSs� in biological structures and
proposed Mössbauer spectroscopy as a promising tool for the
detection of TSs �15�. We have also considered a possible
catalytic behavior of TSs propagating in two-dimensional
substrates �16�.

Goichuk et al. �17� published a model of nonlinear rota-
tional oscillations of amides in an � helix. Although the
C-N bond within an amide is largely rigid, the connecting
C�-C and N-C� bonds rotate, with respective dihedral angles
� and � �see Fig. 1�. These authors modeled rotations char-
acterized by the angle �=�−�, and assumed a quartic form
for the corresponding torsional potential. Since amides have
permanent dipoles, they incorporated dipole-dipole interac-
tions along both the peptide chain and the hydrogen bonds
�see Fig. 3�. Performing Hirota’s method �18� they obtained a
bell-shaped solitonic rotary excitation, formally analogous to
a DS. As in the DS case, prospects for this model are fairly
pessimistic since the energy for the dipole-dipole excitations
is not available as it is mostly consumed by translation of the
RH. While the use of a one-dimensional approximation in
these models is of concern, it has been routinely applied to
both DNA �19� and protein dynamics �20�. It is expected that
the principal direction of motion is maintained while the re-
maining degrees of freedom of the molecular complex
mainly amount to stochastic fluctuations that average out
over each cycle. An alternative approach to the problem re-
quires computationally challenging molecular dynamics
simulations.

III. THE RELAY HELIX AS A PISTON
WITH TODA SOLITONS

Although the relay helix translates along its axis during
the power stroke �2�, its motion is more complex because
there are also tilt and rotational components. Collectively, in
myosin these drive the lever arm, the bulk motion of which

FIG. 2. Secondary structure in myosin showing locations of the
switch-II loop, the relay helix, and the adenosine phosphate. Figure
prepared using MOLMOL �4� and Protein Data Bank entry 1BR2 �5�.

FIG. 3. �-helix geometry showing the hydrogen-bond network.
The cylindrical structure has been flattened, splitting the backbone
�thick line�, with the cylindrical axis running horizontally across the
page. The 3.8 Å distance is the C� to C� distance in sequential
amino acids.
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has been studied experimentally �21�. In this paper we de-
velop a dynamic approach emphasising a hydrogen-bond
role in the polypeptide chain of the RH. These soft bonds
suggest that nonlinear dynamics of the switch loop motion in
ATP hydrolysis may be important. Sharply localized com-
pression at the RH end is here envisaged to produce a TS
pulse.

It is well known that global motions of proteins in aque-
ous solutions are overdamped due to their low Reynolds
numbers �approximately 0.05� �22�. However, local motions
within a given protein, such as conformational changes in-
volving helices or other structural elements, are much less
studied and, while frictional damping is expected to be
present due to interactions with neighboring residues, a typi-
cal relaxation time scale of these motions or the magnitude
of the corresponding Reynolds number is largely an open
topic of investigations. In this paper we will ignore frictional
damping of the motion of relay helices focusing on Newton-
ian aspects of their motion.

Influenced by some recent experimental observations re-
garding the the role of the RH in motor proteins we believe
that a better understanding of its impact on unidirectional
motion will result from a reexamination of the role of inter-
nal nonlinear dynamics.

In the commonly accepted lever-arm model for myosin
motion during the ATP chemical cycle it is expected that the
main contribution is due to a pistonlike translation of the
8.5-nm-long RH. We estimate the force required to rigidly
rotate the lever arm by modeling it as a flexible beam and
displacing one end perpendicular to the beam length a
�small� distance x from its relaxed position while holding the
other end fixed. Thus, we have the textbook equation

F = �3Ef

L3 �x = �x , �1�

where Ef is the flexural rigidity and L the length of the lever
arm. Interestingly, in proposing that the lever arm acts as an
elastic element Howard and Spudich �23� use this same
model.

Alternatively, the stiffness parameter � can be expressed
in terms of thermal energy �kBT�,

� =
3Ef

L3 = kBT�LP

L3 � , �2�

where LP is the persistence length, and for the RH is

3Ef

kBT
= LP = 100 nm �3�

from Howard and Spudich �23�. Taking as representative L
=8.5 nm and kBT=4 pN nm one gets

� = 2.15
pN

nm
= 2.15 � 10−3 N/m. �4�

We now neglect the requirement of Eq. �1� that x�L and
equate the beam and lever-arm tip displacements. For ex-
ample, displacing the lever-arm tip by x=4 nm, which is
within the range of reported values, gives the mechanical
energy

E =
1

2
�x2 = 1.7 � 10−20 J. �5�

Variation in x would change this energy, and reported values
vary; 3.6 nm �21� and 12 nm �5� have both been reported.
Since the energy of ATP hydrolysis is about 0.5 eV�8.0
�10−20 J, it is clear that much of this energy could be im-
parted into RH movement. This energy is, in our model,
consumed to form TSs, which ultimately rotate the myosin
lever arm. Note that choosing x at the upper range of re-
ported values, i.e., 12 nm, gives an energy requirement that
is nine times that of Eq. �5�, almost twice the ATP energy.
This suggests that such a large displacement is unlikely.

IV. TODA MODEL FOR RELAY HELIX

Toda �24� found exact soliton solutions in a lattice model
where the interaction between neighbouring sites is essen-
tially exponential. A TS is a compressional supersonic pulse
with an infinite lifetime. It is stable against perturbations and
it does not transfer energy or momentum during collisions
with other TSs.

The presence of hydrogen bonds in the RH �Fig. 3�, is the
key departure point in our model of chain oscillations using
a nonlinear Toda potential. We use a Newtonian approach to
the dynamics of the biomolecular system and discuss its
limitations in Sec. V.

� helices composed of amino acids with near identical
masses are especially favorable for sustaining TSs. We begin
the development of our model by considering RHs as helical
chains of amino acids with hydrogen bonds between appro-
priate nearby positions as a Toda lattice of equal masses M
located along an axis with equilibrium distances R0=4.5 Å
between neighboring sites �see Fig. 3�.

The nearest-neighbor interaction Toda potential UT is ex-
pressed by

UT = �
n

k

b
	�un − un−1� +

1

b
�e−b�un−un−1� − 1�
 �6�

where un denotes the displacement of the nth amino acid in
the chain from its equilibrium position. The parameter k rep-
resents the transverse elastic coefficient of small amplitude
oscillations �in the harmonic approximation� while b, is char-
acteristic of the Toda potential well width �see Fig. 4�.

The force on the nth site due to the hydrogen bonds is

Fn = −
�UT

�un
, �7�

or more explicitly, using Newton’s second law and Eq. �6�,

Fn = M
d2un

dt2 =
k

b
�e−b�un−un−1� − e−b�un+1−un�� . �8�

Introducing the relative displacement 	n=un−1−un and using
Eq. �8� gives

M
d2	n

dt2 =
k

b
�eb	n+1 − 2eb	n + eb	n−1� . �9�

A single TS solution of Eq. �9� is given by
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	n =
1

b
ln�1 +

sinh2 


cosh2�
�nR0 − vt�/R0�� , �10�

describing a compression pulse traveling along the chain
with the lattice spacing R0 and the velocity v, where

v =
v0



sinh�
�, v0 = R0� k

M
, �11�

and v0 represents the speed of sound from a corresponding
linear approximation of the Toda potential, Eq. �6�.

Here 
 denotes the characteristic parameter of a TS, and
is strongly determined by initial conditions. This parameter
and the soliton velocity together define the localization do-
main of the TS. Also related is the number of amino acids in
the soliton, �n, as


�n = 2� . �12�

It is evident from Eq. �11� that the solitonic velocity always
exceeds the speed of sound, so a TS may be called a “super-
sonic soliton.” Moreover, it follows that a narrower TS, with
larger 
, propagates faster.

In the continuum approximation, the gap between sites is
small, �n�1 or equivalently 
�2�. Then Eq. �10� may be
simplified as

	�x,t� =
1

b
� sinh2 


cosh2�
�/R0�� , �13�

where �=x−x0−vt represents a moving coordinate variable
with x0 as the TS’s center �see Fig. 5�. Here 	�x , t� replaces
the discrete variable 	n and, in the continuum limit, is given
by

	�x,t� = − R0
�

�x
u�x,t� . �14�

We then integrate this for u�x , t� using the boundary condi-
tion u��=0, so that we obtain

u��� =
2

3b
2

1 − tanh�
�/R0�sinh2 �
�
1 + 2 cosh2�
�/R0�

. �15�

The momentum P associated with TS propagation is

P =
M

R0
�

−

+ � �u

�t
�� �u

��
�d� = M*v �16�

where the effective mass M* of a TS is determined by the
local lattice mass density change from lattice displacements
in the TS. Combining the last two equations and integrating
yields

M* =
M sinh4�
�

3
R0
2b2 . �17�

A TS carries both kinetic and potential energy. These are,
respectively,

Ek =
M

2R0
�

−

+ � �u���
�x

�2

dx =
2M sinh4�
�

3
R0
2b2 v2 �18�

and

Ep =
1

b
�

−

+

UT�	����d� �19�

or

FIG. 4. Dimensions of the hydrogen bond. �a� Distances be-
tween atomic centers with the hydrogen bonds. �b� The single-site
Toda potential well UTn �upper curve� and an approximation to it,
UTn� ; see Eq. �23� �lower curve�.

FIG. 5. Toda soliton chain dynamics: �a� relaxed chain �no soli-
ton�; �b� local contraction caused by a TS and displacement of sites
	n�x�.
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Ep =
2k sinh2�
�

3
b2 �1 +
4

15
sinh2�
�� . �20�

The decrease in distances between neighbors is a local con-
traction. The total linear contraction 	0� is obtained by inte-
grating the relative displacements of all sites in the chain,

	0� =
1

R0
�

−

+

	�x,t�dx , �21�

	0� =
2


bv0
2�v0 sinh�
�



�2

=
2


b
� v

v0
�2

¯ . �22�

It clearly scales with the square of the relative TS propaga-
tion velocity v /v0.

It was shown �25� that, although the spike of a TS repre-
sents compression of the lattice, the corresponding trough
gives a contribution to elongation, and as a whole a TS pro-
duces an elongation of the lattice.

In order to estimate key parameters in the TS model, we
take the local Toda potential at position n, a single term from
the sum of Eq. �6�, and expand about the bottom of the
potential curve �see Fig. 4�b��

UTn � UTn� =
k

2
	2 +

kb

6
	3. �23�

This resembles the effective potential between two
�hydrogen-bonded� DNA base pairs when perturbed by an
external force �13�. Differentiating this we get two local ex-
trema 	1=0 and 	2=−2/b. The value of UTn� at the second �a
local maximum� is

UTn� �	2� =
2

3

k

b2 . �24�

We now take �	1−	2 � �1 Å and chose UTn� �	2� as the depth
of the potential well.

Since the energy of a single hydrogen bond is of the order
of the physiological thermal energy �kbT� �13� this implies
the order of magnitude approximation

UTn� �	2� � 2kBT = 0.05 eV = 8 � 10−21 J. �25�

Combining Eqs. �24� and �25� and these choices one gets

b = 2 � 1010 m−1, k = 5 N/m �26�

as rough estimates of the important parameters of the TS
model of the R. Let us now take M =115 Da=1.9
�10−25 kg as the average amino-acid mass. Assuming that a
TS is spread across �n�6 neighboring amino acids that
form an interacting cluster, giving 
=1, we obtain the fol-
lowing set of values from Eqs. �11�, �18�, �20�, and �22�:

v = 3 � 103 m/s,

Ep = 1.5 � 10−20 J,

Ek = 2.1 � 10−20 J,

	0� = 1 Å. �27�

It is gratifying to note that the total energy of such a TS is

Etot = 3.6 � 10−20 J �28�

which is smaller than the 8.0�10−20 J released in ATP hy-
drolysis that generated the TS and is still large enough to
provide the estimated 1.7�10−20 J required for lever-arm
motion given by Eq. �5�. While the energy estimate in Eq.
�28� is only an order of magnitude approximation, it indi-
cates that our choice of parameters was reasonable.

No less important is that the maximum compressional
forces produced by such a TS is

Fmax =
k

2b
= 1.3 � 10−10 N = 130 pN. �29�

This value is an order of magnitude smaller than the estimate
by Yomosa �26� of 840–2000 pN which is much beyond the
experimental values at which hydrogen bonds break �13�.

V. CONCLUSION AND DISCUSSION

Directional biological motion requires that the cell be able
to convert stored chemical energy into mechanical energy.
Understanding how this mechano-chemical energy transduc-
tion occurs and how small biological forces, on the order of
piconewtons, generated at the molecular level, are organized
to produce �large� cellular-scale movement is fundamental to
understanding cell motility.

Here we have examined the relay helices of these
complex machines. The way in which protein motors can
work and be precisely tuned to have so many different motile
behaviours may well be due, in part, to RHs and their
dynamics.

On the basis of experimental observations we theoreti-
cally examined the motion of a RH, paying special attention
to internal degrees of freedom associated with hydrogen
bonds within the �-helix backbone. We estimated energies
and forces involved and critically compared this TS model
with some other theoretical approaches.

We believe that a TS’s local compression could catalyze
the process of latching �2� translated RHs by repositioning
termini nearer to their counterparts in the docking step in
accordance with the “lock and key” model of biomolecular
interactions.

Of course in myosin this strong compression would
propagate into the converter regions driving the motions that
result in the lever-arm movement, as it reached the far end of
the RH.

One very appealing point of the theory is the compatabil-
ity between the total mechanical energy of moving the RH,
the energy that may be supplied by ATP hydrolysis, and our
estimate of the energy the RH must provide to move the
lever arm.

We mention here that Ginzburg-Landau- �GL-�type inter-
actions also provide an interesting framework to examine
energy transduction in biological systems. As has been dem-
onstrated for microtubules �27� and DNA-protein systems
�28�, within GL-type models it is possible to relate chemical
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energy per protein complex directly to the vibrational energy
in the system, and to the energetic threshold required for
dissociation of protein complexes. Given a dynamic model,
this precise relation between chemical and mechanical ener-
gies could be tested experimentally. In principle it would be
possible to discriminate between different types of nonlinear
dynamic models.

For instance, a mechanical model �28,29� proposes how
phosphorylation of the retinoblastoma �Rb� protein might
lead to conformational changes and ultimately dissociation
of Rb protein from histone deacetylase and the transcription
factor E2F. Functionally, Rb protects against cancer by regu-
lating progression of the cell cycle during the G1 phase. To
understand and discriminate between normal function and
various dysfunctions of Rb protein it would be particularly
interesting to determine the dynamics transducing the chemi-
cal energy into movement. We believe � helices have
an indispensable role in these subtle variations in protein
dynamics.

It should be mentioned that the inclusion of internal fric-
tion between various domains of a protein is a real problem
that has not been adequately addressed in our paper but,
unfortunately, there is neither much experimental nor theo-
retical evaluation of its role that can be readily found in the
literature. McCammon �30� states that proteins’ atomic mo-
tions can be compared to those that occur in other dense
materials. Small motions at short times are similar to what is
observed within the molecules of liquids. Larger motions in
proteins, such as slow conformational changes, are opposed
by the forces that stabilise their native structures, resulting in
solidlike features. Moreover, strong coupling has been ob-
served between local and collective displacements resulting
in nonlinear dynamical behavior. Importantly, this coupling
governs the character of many ligand-binding processes and
structural transformations, such as relay helix dynamics, that
are essential to biological function. The absence of friction in
the models of DNA dynamics, for example, is more a rule
than an exception and it can be traced to the original paper
by Peyrard and Bishop �31�, its extension to statistical prop-
erties of DNA melting �32�, and the account of base-pair
sequences �33�. The internal dynamics of protein compo-
nents is also often described using Newtonian approaches
and Garcia �34� states that global motions of conformational
changes in proteins are governed by nonlinear dynamics with

some damping using molecular dynamics. The global non-
linear collective excitations are responsible for most of the
atomic fluctuations of the molecule. This is consistent with
the approach we adopted in our paper.

Nonetheless, it would be instructive to quantitatively as-
sess the magnitude of viscous forces within the atoms of a
protein. Following Howard’s book ��22� p. 40� we estimate
the viscosity coefficient as the product of the following fac-
tors: �a� the fraction of time spent by a molecule attached as
a cross link �hydrogen bond�, �b� the time spent attached to a
link �typically 10−11 s�, and �c� the stiffness of the bonds that
are being broken in the process of moving �approximately
2 pN/nm in our case�. Hence the force of friction is propor-
tional to the number of broken bonds. The friction force is
proportional to the above viscosity coefficient and the aver-
age velocity of the domain’s motion, so using our value of
the average velocity as 3�103 m/s we obtain a friction
force of 6 pN assuming only 10% of the time is spent at-
tached. This is not a significant amount compared to the
maximal compressional force of 130 pN found in our paper.
However, it strongly depends on the proportion of the time
spent attached. Thus, with 50% of the time spent by the
domain being attached the friction force rises to 30 pN and at
100% the value is 60 pN, i.e., close to one-half of the total
compressional force. It is, therefore, reasonable to expect
that damping effects will slow the TS motion down over its
course. It is not necessary for these nonlinear objects to be
destroyed by internal viscosity. In this connection, we wish
to refer the reader to our recent paper where viscosity was
introduced as a perturbation leading to slight distortion and
deceleration of breather solitons in biomolecular systems
�35�.

Since experimental evidence for � helix dynamics is
still missing we would like to suggest that deuterium-labeled
neutron scattering could be a possible tool for its
determination.
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